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cavity with spatially variable wall temperature
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Abstract

Natural convection in two-dimensional enclosure with three flat and one wavy walls is numerically investigated. One

wall is having a sinusoidal temperature profile. Other three walls including the wavy wall are maintained at constant

cold temperature. This problem is solved by SIMPLE algorithm with deferred QUICK scheme in curvilinear co-ordi-

nates. The tests were carried out for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl

number was kept constant. The geometrical configurations considered were namely one-, two- and three-undulations.

The results obtained show that the angle of inclination affects the flow and heat transfer rate in the cavity. With

increase in amplitude, the average Nusselt number on the wavy wall is appreciably high at low Rayleigh number.

Increasing the number of undulations beyond two is not beneficial. The trend of local Nusselt number is wavy.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The natural convection process has developed con-

siderable importance because of its relevance to heat

transfer in many engineering applications. These are

cooling of electronic components, heating and cooling

of rooms, solar heaters, crystal growth, glass melting

to name a few of them. Since the velocity and the tem-
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perature equations are coupled due to the buoyancy

force, the study of natural convection is very complex.

When in an enclosure, the two vertical walls are dif-

ferentially heated and the horizontal top and bottom

walls are maintained under adiabatic conditions, a fluid

flow is developed because of the horizontal temperature

difference DTH. The density difference gradient (i.e., tem-

perature difference gradient) is horizontal and the grav-

ity vector acts perpendicularly. These two vectors act

normal to each other and the direction of the circulation

depends upon their orientation. However, the situation

becomes more complex when these two vectors are par-

allel to each other. When the bottom wall is heated and

the top wall is cooled, i.e., there is a vertical temperature

difference DTV, the density increases from bottom to

top. These two vectors (i.e., density gradient and grav-

ity) are parallel and opposite to each other. In this case
ed.
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Nomenclature

g gravitational acceleration

H height of the enclosure

J Jacobian

Nu Nusselt number

Nuav average Nusselt number ¼ 1
s

R s
0
Nul ds

Numax the maximum value of local Nusselt number

on the boundary at x = 0

Numin the minimum value of local Nusselt number

on the boundary at x = 0

p dimensionless pressure

Pr Prandtl number

P, Q grid control functions

Ra Rayleigh number = gbDTH3/(ma)
T dimensionless temperature

DT differential temperature, dimensionless

u, v dimensionless velocity components in x and

y direction

U, V dimensionless contravariant velocity com-

ponents in n and g direction

umax the maximum horizontal velocity on the ver-

tical mid plane of the cavity

vmax the maximum vertical velocity on the hori-

zontal mid plane of the cavity

x, y dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity

/ inclination angle

# general variable representing u, v and T

n, g dimensionless curvilinear coordinates

k wave amplitude

Subscripts

c, h cold wall and hot wall

H horizontal

V vertical

w wall

x, y derivative relative to x, y, respectively

n, g derivative relative to n, g, respectively

Superscript

* dimensional form

3834 A. Dalal, M.K. Das / International Journal of Heat and Mass Transfer 48 (2005) 3833–3854
the circulation will start after a critical Rayleigh number

is reached (Bénard convection). In the case of top wall

being heated and the bottom wall being cooled, the den-

sity increases from top to bottom. The two vectors are

parallel and acting in the same direction. The fluid is

thermally stratified and there will be no circulation in

this case.

In an enclosure, if the four walls are either heated or

cooled, there will exist a DTH and DTV. By choosing a

proper DTH and DTV, it is possible to generate two cir-

culations of opposite direction inside the enclosure. This

method can be used to control the fluid circulation in-

side the enclosure. The situations will change in the case

of tilted enclosure.

The natural convection process inside a rectangular

enclosure has been studied extensively for the last four

decades. Ostrach [1] has given a review of the history

and developments of such heat transfer process with

the inception of natural convection as a research topic.

The heat transfer process is dominated by conduction

when the Rayleigh number is low. With the increase of

Rayleigh number, thermal boundary layer forms adja-

cent to the wall and a core region is formed. The heat

transfer is then dominated by convection. It is the inter-

action of this core region with the boundary layer that

makes the understanding of the heat transfer process

very complex. Depending upon the aspect ratio

(height/width), the fluid flow pattern will change with

the variation in Rayleigh number.
Two-dimensional experimental studies or numerical

solutions inside a differentially heated rectangular enclo-

sure tilted at different angles have been carried out under

various conditions. During the last decade, the subject of

natural convection in inclined cavities has been extended

by additional variations. Research has been done on the

influence of change in geometry and on changes in the

boundary conditions.

An enclosure with corrugated bottom surface main-

taining a uniform heat flux and flat isothermal cooled

top surface and side walls adiabatic was studied by

Noorshahi et al. [2]. The results show that the pseudo-

conduction region is increased with increase of wave

amplitude. The natural convection heat transfer in a

two-dimensional rectangular enclosure fitted with a peri-

odic array of hot roughness elements at the bottom has

been investigated numerically [3]. Bottom surface is

heated and the right vertical wall is cooled and the other

walls are adiabatic. Increase in heat transfer is obtained

when the roughness element phase shift is equal to half

its period. The increment in heat transfer is found to

be more significant for enclosures with higher values of

roughness element amplitude.

Yao [4] has studied theoretically the natural convec-

tion along a vertical wavy surface. He found that the lo-

cal heat transfer rate is smaller than that of the flat plate

case and decreases with increase of the wave amplitude.

The average Nusselt number also shows the same trend.

Adjlout et al. [5] reported a numerical study of the effect
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of a hot wavy wall in an inclined differentially heated

square cavity. Tests were performed for different inclina-

tion angles, amplitudes and Rayleigh numbers for one-

and three-undulations. The trend of the local heat

transfer is wavy. The mean Nusselt number decreases

comparing the square cavity.

The effect of non-uniform temperature distribution

on an inclined three-dimensional enclosure has been

studied by Chao et al. [6]. Bottom wall is maintained

at a saw-toothed temperature distribution with different

amplitude and orientation while top wall is isothermal

and other faces are adiabatic. The circulation pattern

did not change significantly with the temperature distri-

butions. The Nusselt number does not change signifi-

cantly with inclination. Chao et al. [7] in another study

considered half of the bottom surface heated and the

top surface cooled, while half of the bottom surface

and other vertical surfaces were adiabatic. The observed

and predicted patterns of circulation are found to be in

good agreement. A numerical study of natural convec-

tion in an enclosure was investigated where the heated

wall of the enclosure is divided into two higher and low-

er temperature regions and the temperature of the cold

wall is maintained at a constant [8]. The results show

that the local Nusselt number distribution varies drasti-

cally at the intersection of the higher and lower temper-

ature regions, and the flow is strongly affected by the

above two parameters.

Convective motion in a square cavity with linearly

varying temperature imposed along the top surface has

been investigated numerically by Shukla et al. [9]. The

side and bottom walls of the rigid cavity are assumed

to be insulated. For low Rayleigh number, a single con-

vective cell is formed. With increase in Rayleigh number,

flow and temperature fields become asymmetric. The

temperature field is generally stratified with lower part

of cavity relatively isothermal. Oosthuizen and Paul

[10] considered an enclosure with side wall partially

heated and top wall cooled. In another study, Oosthui-

zen [11] considered an enclosure with bottom surface

heated and the top surface is inclined and maintained

at uniform cold temperature. The temperature of the

side walls varies in a prescribed way between the bottom

and the top wall temperatures. The proposed system is

found in crop drying applications such as corn and rice.

The top surface inclination has been varied between 0�
and 45�, aspect ratio 0.25 and 1 and Rayleigh number

103 and 107. The effect of changes in governing parame-

ters on flow pattern and mean heat transfer rate to the

upper surface has been studied. Heating from the top

wall leads to thermal stratification. However, if the tem-

perature imposed has a sinusoidal distribution, two cells

counter rotating will be formed. This kind of heating is

found in glass technology. In a study carried out by Sar-

ris et al. [12], the top wall is periodically heated while the

side walls and the bottom wall are adiabatic. This en-
sures that the top wall controls the flow. The thermal

boundary layer is confined near the top wall. The values

of maximum and minimum Nusselt number is shown to

increase with increase of Rayleigh number.

From the above literature survey, the following

observations are made. Though a large amount of liter-

ature is available on studies concerning rectangular and

nonrectangular geometry, not much focus has been gi-

ven on natural convection in enclosures with vertical

wavy wall. It has been found that in most of the cases,

the walls are differentially heated either in the horizontal

or in the vertical directions. Problems concerning the

simultaneous imposition of these two types of boundary

conditions are rare in the literature. Again, it has been

found that temporally varying boundary conditions

(not mentioned here) are present in the literature,

whereas spatially varying boundary conditions have

not been given much importance.

In the present study, a natural convection problem

has been solved in a square enclosure having three flat

walls and the wavy vertical wall consisting of one-,

two- and three-undulations of varying amplitudes. The

two vertical walls and the bottom wall are maintained

at a fixed lower temperature. The top wall is heated with

sinusoidally varying temperature distribution in the

space coordinate. Air has been taken as the working

fluid (Pr = 0.71). The study has been conducted at differ-

ent inclination of the enclosure from 0� to 360� in steps

of 30�.

1.1. Problem specification

The problem considered is a two-dimensional heat

transfer in a square cavity with wavy right vertical wall

filled with viscous fluid. The upper wall temperature is

considered to be spatially varying with sinusoidal tem-

perature distribution, T �
wðx�Þ. The other three walls are

considered to be of constant temperature, T �
c . The tem-

perature distribution on the top wall is as follows [12]:

T �
wðx�Þ ¼ T �

c þ
DT �

2
1� cos

2px�

H

� �� �
; ð1Þ

where T �
c is the minimum value of the imposed temper-

ature distribution, DT * is the temperature difference

between the maximum and the minimum temperatures

of the upper wall, and H is the length of the square

enclosure. The above equation can be written in the

dimensionless form (Eq. (4)) as follows and the

dimensionless temperature distribution of the top wall

is shown in Fig. 1:

T wðxÞ ¼ 1
2
1� cosð2pxÞð Þ. ð2Þ

The shape of the wavy vertical wall is taken as sinu-

soidal. The expression of the wavy wall is given by

f ðyÞ ¼ 1� kþ kðcos 2pnyÞ½ �; ð3Þ
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Fig. 1. Imposed temperature distribution (dimensionless) on

the heated surface.

Fig. 2. Geometrical details of the cavity.
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where n is the number of undulations and k is the ampli-

tude [5]. Three different cases with one-, two- and three-

undulation are studied. The amplitude for all three cases

have been varied from 0.01 to 0.10 in steps 0f 0.01. The

Rayleigh number is varied from 100 to 106. Prandtl

number is fixed to be 0.71. Fig. 2 shows the geometrical

features of the cavity.
2. Governing equations and boundary conditions

Natural convection is governed by the differential

equations expressing the conservation of mass, momen-

tum, and energy. The present flow is considered steady,

laminar, incompressible and two-dimensional. The vis-

cous dissipation term in the energy equation is neglected.

The momentum equations are simplified using Bous-
sinesq approximation, in which all fluid properties are

assumed constant except the density in its contribution

to the buoyancy force. The governing equations and

the boundary conditions are cast in dimensionless form

using the following dimensionless variables:

x ¼ x�

H
; y ¼ y�

H
;

u ¼ u�H
a

; v ¼ v�H
a

;

p ¼ p�H 2

qa2
; T ¼ T � � T �

c

DT � .

ð4Þ

Continuity equation:

ou
ox

þ ov
oy

¼ 0; ð5Þ

u-momentum equation:

oðu2Þ
ox

þ oðuvÞ
oy

¼ � op
ox

þ Pr
o
2u
ox2

þ o
2u
oy2

� �

� RaPrT cos/; ð6Þ

v-momentum equation:

oðuvÞ
ox

þ oðv2Þ
oy

¼ � op
oy

þ Pr
o2v
ox2

þ o2v
oy2

� �

þ RaPrT sin/; ð7Þ

energy equation:

oðuT Þ
ox

þ oðvT Þ
oy

¼ o
2T
ox2

þ o
2T
oy2

. ð8Þ

In addition, the velocity and temperature boundary con-

ditions, take the following form:

u ¼ v ¼ T ¼ 0 for x ¼ 0; 1 and 0 6 y 6 1; ð9aÞ
u ¼ v ¼ T ¼ 0

for x ¼ f ðyÞ ¼ ½1� kþ kðcos 2pnyÞ� and

0 6 y 6 1; ð9bÞ
u ¼ v ¼ T ¼ 0 for y ¼ 0 and 0 6 x 6 1; ð9cÞ
u ¼ v ¼ 0 and T ¼ 1

2
ð1� cosð2pxÞÞ

for y ¼ 1 and 0 6 x 6 1. ð9dÞ
2.1. Transformation of the governing equations

The governing equations transformed from the

Cartesian system (x,y) to the boundary-fitted coordinate

system (n,g) are given by [13,14].

Continuity equation

U n þ V g ¼ 0; ð10Þ
Generalised momentum and energy equations

ðU#Þn þ ðV #Þg ¼ Sðn; gÞ þ C
J
ða#n � b#gÞ

� �
n

þ C
J
ð�b#n þ c#gÞ

� �
g

; ð11Þ
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where C = Pr for the momentum equations and C = 1

for the energy equation. The source term S(n,g) is given
by

Sðn; gÞ ¼ �ygpn þ ynpg for # ¼ u; ð12aÞ
Sðn; gÞ ¼ xgpn � xnpg þ J RaPrT for # ¼ v; ð12bÞ
Sðn; gÞ ¼ 0 for # ¼ T . ð12cÞ

The relationships between the Cartesian and contra-

variant velocity components are

U ¼ ygu� xgv; V ¼ xnv� ynu. ð13Þ

The boundary conditions given in Eq. (9) are Dirichlet

type. The boundary conditions on the computational

plane can be written as follows:

u ¼ v ¼ T ¼ 0 for n ¼ 0; 1 and 0 6 g 6 1; ð14aÞ
u ¼ v ¼ T ¼ 0 for g ¼ 0 and 0 6 n 6 1; ð14bÞ
u ¼ v ¼ 0 and T ¼ 1

2
ð1� cosð2pxÞÞ

for g ¼ 1 and 0 6 n 6 1. ð14cÞ

The heat transfer rate by convection in an enclosure

is obtained from the Nusselt number calculation. The lo-

cal Nusselt Nul numbers on the four walls are expressed

as

Top wall Nul ¼
1

J
ffiffiffi
c

p ðcT g � bT nÞ; ð15aÞ

Right wall Nul ¼
1

J
ffiffiffi
c

p ðaT n � bT gÞ; ð15bÞ

Bottom wall Nul ¼ � 1

J
ffiffiffi
c

p ðcT g � bT nÞ; ð15cÞ

Left wall Nul ¼ � 1

J
ffiffiffi
c

p ðaT n � bT gÞ. ð15dÞ

The average Nusselt number is the average of local

Nusselt number along a wall and is defined by the fol-

lowing equation:

Nuav ¼
1

s

Z s

0

Nul ds. ð16Þ
2.2. Grid generation

Numerical grid generation has now become a fairly

common tool for use in the numerical solution of partial

differential equations on arbitrarily shaped regions. The

coordinate transformation technique advanced by

Thompson et al. [15] is used for the solution of problems

over complex geometries. The transformation is ob-

tained from the solution of partial differential equations

on the regular computational domain. Mapping is done

to convert the regions having irregular shape (physical

domain) into the computational domain where the

geometry becomes regular (computational domain) with

a suitable transformation. A curvilinear mesh is gener-
ated over the physical domain such that one member

of each family of curvilinear coordinate lines is coinci-

dent with the boundary contour of the physical domain

[16]. The Navier–Stokes equations are then solved on

the transformed plane and the solution is back-trans-

formed to the physical plane. The transformation is as

follows:

n � nðx; yÞ; g � gðx; yÞ; ð17Þ

and the inverse transformation is given by

x � xðn; gÞ; y � yðn; gÞ. ð18Þ

The mapping to the body fitted coordinate system is

constructed by specifying the desired points (x,y) on the

boundary of the physical domain. The distribution of

points on the interior is determined by solving a system

of Poisson equations:

nxx þ nyy ¼ P ðn; gÞ; ð19Þ
gxx þ gyy ¼ Qðn; gÞ. ð20Þ

Eqs. (19) and (20) are then transformed to computa-

tional space by interchanging the roles of the indepen-

dent and dependent variables. This yields a system of

two equations of the form

dxnn � 2bxng þ cxgg þ J 2ðPxn þ QxgÞ ¼ 0; ð21Þ
dynn � 2byng þ cygg þ J 2ðPyn þ QygÞ ¼ 0; ð22Þ

where the geometric coefficients d, b, c and the Jacobian

are given by

d ¼ x2g þ y2g; ð23aÞ

b ¼ xnxg þ ynyg; ð23bÞ

c ¼ x2n þ y2n; ð23cÞ

J ¼ xnyg � xgyn; ð23dÞ

P and Q are functions that provide control of the mesh

concentration. The values of P and Q have to be chosen

depending on the clustering of the grid required for the

problem in hand. The transformed Eqs. (21) and (22) are

discretized over the computational plane using second-

order differencing and then solved numerically. The

coefficients in Eq. (23) are computed at each grid point.

For the present study, the grid used are shown in Fig.

3(a)–(c).
3. Numerical procedure

The governing equations are discretized on a struc-

tured grid. The velocity components and the scalar vari-

ables (pressure, temperature) are located on the grid in a

staggered manner. The governing equations are solved

numerically by finite volume method. The semi implicit

method for pressure linked equation (SIMPLE) [17] is

used to couple momentum and continuity equations.
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Fig. 3. Mesh distribution in the cavity for one-, two- and three-

undulations.
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The deferred QUICK scheme of Hayase et al. [18] is em-

ployed to minimize numerical diffusion for the convec-

tive terms for both the momentum equations and

energy equation. The central difference scheme of Patan-

kar [17] is employed near the boundary points for the
convective terms. The solution of the discretized

momentum and pressure correction equation is obtained

by line-by-line method [17]. The pseudo-transient ap-

proach is followed for the numerical solution as it is use-

ful for situation in which the governing equations give

rise to stability problems, e.g., buoyant flows [19]. Un-

der-relaxation factor for pressure with values of 0.01

was used.

The iterative procedure is initiated by the solution of

energy equation followed by momentum equations and

is continued until convergence is achieved. Euclidean

norm of the residual is taken as convergence criteria

for each dependent variable in the entire flow field

[20]. The mass balance for global convergence was taken

as 10�8. The calculations were performed on Pentium

III, 128 RAM machine.

3.1. Grid independence study of the problem concerned

The grid independence test is performed using succes-

sively sized grids, 21 · 21, 41 · 41, 61 · 61 and 81 · 81

for Ra = 104 and 106, k = 0.05 and / = 90�. The distribu-
tion of local Nusselt number at wavy wall for one- and

three-undulations are shown in Fig. 4(a) and (b), respec-

tively, when Ra = 104 whereas for Ra = 106, they are

shown in Fig. 4(c) and (d), respectively. It is observed

that the curves overlap with each other for 61 · 61 and

81 · 81. So a grid number of 61 · 61 is chosen for fur-

ther computation.

3.2. Code validation

The present code is validated for natural convection

heat transfer by comparing the results of a buoyancy

driven laminar heat transfer in a square cavity with dif-

ferentially heated side walls. The left wall was kept hot

while the right wall was cooled. The top and bottom

walls are insulated. In the present work numerical pre-

dictions, using the developed algorithm, have been ob-

tained for Rayleigh numbers between 103 and 105 on

elliptic mesh with 61 · 61 grid points.

Table 1 compares the results with those by de Vahl

Davis [21], Markatos and Perikleous [22] and Had-

jisophocleous et al. [23]. The results are in very good

agreement with the benchmark solution, especially for

the lower Rayleigh numbers. At higher Rayleigh num-

bers more points are needed close to the vertical walls

for an accurate evaluation of the wall temperature gradi-

ent [23].
4. Results and discussion

A parametric study was carried out to determine the

influence of inclination angle (/), Ra, amplitude (k) and
number of undulations on the flow field of air. Inclina-



Fig. 4. Grid independence test: Comparison of local Nu on the right wall. (a) For Ra = 104, one-undulation, wavy wall, / = 90�; (b) for
Ra = 104, three-undulations, wavy wall, / = 90�; (c) for Ra = 106, one-undulation, wavy wall, / = 90� and (d) For Ra = 106, three-

undulations, wavy wall, / = 90�.
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tion angle (/) was considered in the range of 0–360� in
steps of 30� to obtain the inclination. The Ra was varied

between 100 and 106 to cover a large range. The influ-

ence of the amplitude (k) was examined for the values

in between 0.01 and 0.1. All these cases were computed

for one-, two- and three-undulations.

4.1. Streamtraces and isotherms

Figs. 5–10 show the streamtraces and isotherms for

Ra = 105 and k = 0.05. The action of the gravity vector

is shown by arrow. For / = 0� (Fig. 5(a)), there is mainly

one cell encompassing the complete domain with an ex-

tremely small one at one corner. The main flow is ob-

served to be in the counter clockwise direction because

the sinusoidally varying temperature is on the right side

of the gravity vector. Similar trend is obtained for two

wave and three waves cases (Fig. 7(a) and Fig. 9(a)).

The inner streamtraces are pushed towards the corner

which is depicted as C in Fig. 2. Because of the sinusoi-

dally varying temperature distribution, the location A

and C are cold and B is hot (Fig. 2). The circulation is

setting in because the hot fluid B is raising up displacing

cold fluid at C and thus a counter clockwise flow is
occurring. For / = 180�, the heated wall is on the left

hand side of the gravity vector and a clockwise rotation

is taking place.

In both the cases, the inner rotating cell is cusped to-

wards the end of the heated wall opposite to the gravity

vector. Unlike the case of a differentially heated side

walls and other two insulated horizontal walls [21], for

Ra = 105, only one rotating cell inside the core is ob-

served for these two cases.

For / = 90� (Fig. 5(d), Fig. 7(d) and Fig. 9(d)), the

conditions are somewhat similar to the problem studied

by Sarris et al. [12]. In their problem, the top wall had a

sinusoidally varying temperature and other three walls

are adiabatic. The gravity vector was acting from top

to bottom wall. Since the temperature is varying on

the top wall, we are getting a DTV which is varying in

the x-direction. So in spite of DTV parallel to the gravity

vector and the top surface is hot, a circulation is set in

instead of a thermally stratified medium. Two counter

rotating cells (one counter clock wise and another clock

wise) are formed. Here also the inner of the two rotating

cells are directed towards the end points of the heated

wall. When the direction of the gravity vector is re-

versed, i.e., / = 270� (Fig. 5(j), Fig. 7(j) and Fig. 9(j)),



Table 1

Comparison of solutions for natural convection in an enclosed

cavity

a b c d a�d
a � 100

(a) Ra = 103

umax 3.649 3.544 3.544 3.660 �0.3015

y 0.813 0.832 0.814 0.725

vmax 3.697 3.593 3.586 3.706 �0.2434

x 0.178 0.168 0.186 0.258

Numax 1.505 1.496 1.540 1.491 0.9302

y 0.092 0.0825 0.142 0.125

Numin 0.692 0.720 0.727 0.670 0.3179

y 1.0 0.9925 0.991 0.991

(b) Ra = 104

umax 16.178 16.18 15.995 16.292 �0.7047

y 0.823 0.832 0.814 0.742

vmax 19.617 19.44 18.894 19.744 0.6474

x 0.119 0.113 0.103 0.192

Numax 3.528 3.482 3.84 3.5050 �0.7936

y 0.143 0.1425 0.141 0.158

Numin 0.586 0.643 0.670 0.569 �2.90

y 1.0 0.9925 0.991 0.991

(c) Ra = 105

umax 34.73 35.73 37.144 34.992 �0.7544

y 0.855 0.857 0.855 0.775

vmax 68.59 69.08 68.91 68.79 �0.2916

x 0.066 0.067 0.061 0.125

Numax 7.117 7.626 8.93 7.582 �6.534

y 0.081 0.0825 0.080 0.091

Numin 0.729 0.824 1.01 0.701 3.841

y 1.0 0.9925 1.0 0.991

(d) Ra = 106

umax 64.63 68.81 66.42 64.99 �0.5605

y 0.850 0.872 0.897 0.775

vmax 217.36 221.8 226.4 221.27 �1.7988

x 0.0379 0.0375 0.0206 0.075

Numax 17.925 17.872 21.41 20.04 �11.7992

y 0.0378 0.0375 0.030 0.025

Numin 0.989 1.232 1.58 0.916 �7.3811

y 1.0 0.9925 1.0 0.991

a: solution of de Vahl Davis [21]; b: solution of Markatos and

Perikleous [22]; c: solution of Hadjisophocleous et al. [23]; d:

present solution on 61 · 61 grid.
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a similar trend is noticed. There is a formation of two

counter rotating vortices. But the direction of rotation

is interchanged.

The origin of this phenomenon is due to the sinusoi-

dally varying boundary temperature and the orientation

angle (/). It can be observed that small vortices are

formed next to the wavy walls, / = 30� (Fig. 5(b), Fig.

7(b) and Fig. 9(b)) which grow in larger size for /
= 60� (Fig. 5(c), Fig. 7(c) and Fig. 9(c)) and coalesce

to form a rotating cell when / = 90� (Fig. 5(d), Fig.

7(d) and Fig. 9(d)). With further increase in angle of

rotation / = 120�, this cell grows bigger in size and

squeezes the other cell (Fig. 5(e), Fig. 7(e) and Fig.
9(e)). The point to be noted is that, the core of the other

cell breaks down in two small cells. For / = 150�, this
cell has grown in such a size that the other cell has dis-

appeared (Fig. 5(f), Fig. 7(f) and Fig. 9(f)) and for /
= 180�, this cell completely covers the whole domain

(Fig. 5(g), Fig. 7(g) and Fig. 9(g)).

Same sequence of phenomena is observed at / = 210�
(Fig. 5(h), Fig. 7(h) and Fig. 9(h)), 240� (Fig. 5(i), Fig.

7(i) and Fig. 9(i)), 270� (Fig. 5(j), Fig. 7(j) and Fig.

9(j)), 300� (Fig. 5(k), Fig. 7(k) and Fig. 9(k)) and 330�
(Fig. 5(l), Fig. 7(l) and Fig. 9(l)). So, it can be said that

periodically vortices are formed from the wavy wall and

finally disappearing to the opposite flat wall for various

angle of rotation.

For high Ra (105 and above) advection is the mode of

heat transfer neat the heated wall [12]. The similar fea-

ture is noted in the present problem for / = 90� (Fig.

6(d), Fig. 8(d) and Fig. 10(d)). The isotherms concen-

trate near the heated wall and heat transfer is high.

However, half of the domain is very cold (T below

0.05) signifying the heat is unable to penetrate into this

region. For / = 270� (Fig. 6(j), Fig. 8(j) and Fig. 10(j)),

heat is advected throughout the region resulting in a dis-

tribution of the isotherms. We do not have a central core

region in general.

The effect of angle of orientation on the isotherms

and convection are given in the following plots. For

/ = 0� (Fig. 6(a), Fig. 8(a) and Fig. 10(a)), the isotherm

spread well over the domain. They gradually shift to-

wards the heated wall for / = 30� (Fig. 6(b), Fig. 8(b)

and Fig. 10(b)) and / = 60� (Fig. 6(c), Fig. 8(c) and

Fig. 10(c)). The opposite phenomena occur when / is

further increased. The isotherms spread gradually from

the top wall for / = 120� (Fig. 6(e), Fig. 8(e) and Fig.

10(e)) and / = 150� (Fig. 6(f), Fig. 8(f) and Fig. 10(f)).

For these cases, the isotherms are densely packed near

the wavy wall. The isotherms are well distributed for

/ = 210� (Fig. 6(h), Fig. 8(h) and Fig. 10(h)) and /
= 240� (Fig. 6(i), Fig. 8(i) and Fig. 10(i)). For / = 300�
(Fig. 6(k), Fig. 8(k) and Fig. 10(k)) and / = 330� (Fig.

6(l), Fig. 8(l) and Fig. 10(l)) the isotherms are closer to

each other near the opposite wavy wall.

4.2. Temperature profile

The temperature profile at x = 0.5 has been plotted

for two-undulations, Ra = 105 and amplitude = 0.05

with / as parameter (Fig. 11(a)–(c)). With the increase

in / from 0� to 90� (Fig. 11(a)) it is observed that the

convection effects are diminishing at the lower half and

a boundary layer profile emerges [12]. With further in-

crease in / from 120� to 210� (Fig. 11(b)), the boundary
layer profile gives way to a convection dominated pro-

file. When / is in the range of 240–330�, convection ef-

fects are predominant. Fig. 11(d) is the plot of T with Ra

as parameter. With an increase in Ra, the boundary



Fig. 5. Streamtraces for Ra = 105, k = 0.05. One-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 6. Isotherms for Ra = 105, k = 0.05. One-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 7. Streamtraces for Ra = 105, k = 0.05. Two-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 8. Isotherms for Ra = 105, k = 0.05. Two-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 9. Streamtraces for Ra = 105, k = 0.05. Three-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 10. Isotherms for Ra = 105, k = 0.05. Three-undulation case. / increasing from (a) 0� to (l) 330� in steps of 30�.
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Fig. 11. Temperature distribution at x = 0.5 along vertical line for different /.
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layer thickness decreases because T attains bottom wall

temperature value in a shorter distance from the top

wall.

4.3. Nusselt number

4.3.1. Average Nusselt number (Nuav)

The variations of Nuav with / for the wavy wall are

plotted in Fig. 12(a)–(c). With amplitude 0.05 and

Ra = 105, Nuav decrease, then increase and finally de-

crease with the increase of / for one-, two- and three-

undulations (Fig. 12(a)). The negative sign implies that

heat is transferred from the domain to the surroundings.

It is observed that the number of undulations does not

have appreciable effect on Nuav. Fig. 12(b) and (c) give
the plot for amplitude 0.025 and 0.05 for one-undulation

and three-undulations, respectively. In both cases, the

amplitude does not have any appreciable effect on Nuav.

In all the three cases (Fig. 12(a)–(c)), it is observed that

the minimum occurs for / = 30� and the maximum oc-

curs for / = 180�. Also to be noted that there is a valley

spreading for / � 150�–240� (in all the cases) for which

the Nuav remains approximately same. This is due to the

similar isotherm patterns as shown in Fig. 6(f)–(i), Fig.

8(f)–(i), Fig. 10(f)–(i).

The Nuav vs wave amplitude (k) are shown in Fig.

13(a)–(c) for various Ra and undulations when / = 90�.
For k = 0, there is no undulation. Nuav value is same

for Ra = 102–104 (Fig. 13(a)–(c)). It increases for

Ra = 105 and 106. This is happening because conduction



Fig. 12. Average Nusselt number (Nuav) vs /. Fig. 13. Average Nusselt number (Nuav) vs wave amplitude (k).
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is the mode of heat transfer for Ra up to 104 whereas

advection mode of heat transfer starts dominating with

increase of Ra = 105–106. This results in the increase of
Nuav. This limit of Ra is exactly matching with the results

of Sarris et al. [12]. For one-undulation case (Fig. 13(a)),

Nuav increases with wave amplitude for Ra = 102–106. In
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the range Ra = 102–104, the gain in Nuav decreases with

the increase in Ra. The Nuav variation for Ra = 105 and

106 is different than those of 102–104. At high Ra the

advection mode of heat transfer is affected by the wavi-

ness of wall. Also there is a change of flow pattern. A typ-

ical flow pattern at Ra = 106, k = 0.1 and / = 90� is

shown in Fig. 14(a)–(c) for one-, two- and three-undula-

tions. The core of the cell adjacent to the wavy wall is
a

b

0

c
     Streamtrace 

Fig. 14. Streamtrace and isotherm plots
breaking into two smaller cells. This behaviour starts at

Ra = 105 and more pronounced in the case of Ra = 106

and with higher amplitude. Similar type of change of

flow pattern due to the presence of non-rectangular wall

at Ra = 105 and above has been reported by Oosthuizen

and Monaghan [24]. The corresponding isotherms are

shown in Fig. 14(d) and (e). This may be the reason

why Nuav is decreasing with increase in k.
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4.3.1.1. Number of undulations. The variation of Nuav
with wave amplitude for various number of undulations

are given in Fig. 15(a)–(d) for Ra = 103, 104, 105 and 106,

respectively. For all the cases, Nuav increases from one-

undulation to two-undulations. However with further

increase from two- to three-undulations, Nuav decreases.

This is due to the fact that three-undulation case is mak-

ing the fluid to separate out at the bottom undulation

and thus opposing the heat transfer. Thus increasing

the number of undulations from two to three has detri-

mental effect as far as heat transfer is concerned. The

Nuav values for two- and three-undulations are less than

the one-undulation case for k = 0–0.026 and 0–0.066,

respectively, when Ra = 106 (Fig. 15(d)). It has been ob-

served that the right side primary cell breaks into two

smaller vortices when Ra is increased from 105 to 106

(Fig. 14(a)–(c)). This may be the reason for this different

behaviour.
Fig. 15. Average Nusselt num
4.3.1.2. Effect of amplitude (k). When the amplitude is

zero (i.e., a square cavity without undulation), Nuav on

the undulated wall is constant up to Ra = 104 (conduc-

tion mode) and then increases with increase in Ra (con-

vection mode) (Fig. 16(a)–(c)). It is noticed that with a

finite amplitude, Nuav decreases as the advection mode

starts playing a role. It then increases with further in-

crease of Ra giving rise to a local minima. This may

be due to the complex fluid-wavy wall interaction. It is

also to be noted that with increase in amplitude, the

range of Ra for which Nuav is constant (conduction) de-

creases. The result is that even with small Ra, Nuav is

high if k is high. Effective heat transfer rate can be in-

creased with low Ra (the buoyancy effect is small). For

two-undulations (Fig. 16(b)), similar trend is observed

and the magnitude of Nuav is more. However, the mag-

nitude decreases for three-undulations (Fig. 16(c)) and

earlier described in Fig. 15.
ber distribution with k.



Fig. 16. Average Nusselt number distribution for different

amplitude.

Fig. 17. Average Nusselt number distribution for the heated

wall. Variation of Nuav with (a) different inclination angle and

(b) different Ra.
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4.3.1.3. Top heated wall. The heat coming into the do-

main is dissipated by the three cold walls. So the Nuav on
this wall is an indication of the amount of heat transfer

through the domain. The variation of Nuav for the

heated wall with inclination angle is shown in Fig.

17(a) for amplitude 0.05, Ra = 105 and three different

number of undulations. It is observed that Nuav is

decreasing in the range 0�–90� from nearly 3.5 to a little

less that 1.5. It is then increasing to 4.5 up to an angle

270� and finally decreasing to the value at 0�. The distri-
bution lines are practically overlapping for one-, two-

and three-undulations. There is a distinct minimum and

maximum locations obtained corresponding to 90� and
270�, respectively. This is due to the abrupt change in

the isotherm patterns as shown in Figs. 6, 8 and 10.



3852 A. Dalal, M.K. Das / International Journal of Heat and Mass Transfer 48 (2005) 3833–3854
Fig. 17(b) shows the variation of Nuav with Ra for

amplitude = 0.05, / = 90�. With increase in Ra, there is

a drop of Nuav by 10% for two- and three-undulations
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Fig. 18. Local Nusselt number distribution for one-undulation.
and 7% for one-undulation. This drop may possibly be

attributed to the fluid flow structure which adversely af-

fects the heat dissipation from three cold surfaces.
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4.3.2. Local Nusselt number (Nul) distribution

4.3.2.1. Effect of Ra. Nul vs g distributions for various

Ra are shown in Fig. 18(a), Fig. 19(a) and Fig. 20(a) for
one-, two- and three-undulations, respectively. With the

increase of Ra, the maximum Nul is increasing near the

top (Fig. 18(a)) whereas it is decreasing near the bottom

portion of the wavy wall. As the advection dominates

with high Ra, Nul increases at the top portion of the

wavy wall. At the same time fluid velocity is high and

it gets deflected from the crest of the wall and thus at

the bottom portion, there is not much fluid circulation

and Nul decreases. For two-undulations, there are two

maxima for Nul and for three-undulations, there are

three maxima. The point to be noted is that at the upper-

most undulation, the largest Ra has the highest Nul
value whereas for bottom undulation, it has the lowest

Nul value which is in accordance with the above

justification.

4.3.2.2. Effect of /. The variation of Nul with / at step

of 30� are shown in Fig. 18(b)–(c), Fig. 19(b)–(c) and

Fig. 20(b)–(c). The Nul distribution value are consis-

tently very close to each other in the range / = 150�–
240�. This is due to the similar isotherm pattern in this

range (refer Section 4.1). They are appreciably higher

also compared to those values at other angles of varia-

tion. This is the reason why the Nuav values are close

to each other in this range (Fig. 12).
5. Conclusions

In this study, numerical results of natural convection

heat transfer in a two-dimensional enclosure subjected

to steady sinusoidal temperature boundary condition

on one wall and constant temperature on other three

walls are presented. One of the constant-temperature

wall is curved having undulation. The number of the

undulations has been varied from one to three. The

influence of amplitude, Ra, angle (/) on the flow pat-

terns and heat transfer characteristics in the enclosure

is examined in detail. From the results presented above,

the following main conclusions may be drawn.

• With the orientation angle (/), one convection cell

gradually transforms into two counter rotating cells

for all the undulation cases.

• For / = 90�, the temperature profile at x = 0.5 resem-

bles a boundary layer profile. The boundary layer

thickness reduces with increase in Ra. For other

angles, the shape of the profile depends upon the con-

vection strength.

• For all the type of undulation, maximum Nuav for the

wavy wall occurs in the range / = 150�–240� and

minimum Nuav occurs at / = 30�.
• For all finite amplitude, Nuav shows a minimum for

the range of Ra studied.

• For small Ra, it is possible to increase Nuav on the

wavy wall with increase of amplitude.
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• With high Ra and large amplitude, the cell near the

wavy wall shows a different flow pattern.

• With increase in Ra, Nuav on the wavy wall decreases

with increase in amplitude.

• With increase in amplitude, the heat transfer on the

wavy wall decreases for three-undulations case com-

pared to one- and two-undulations cases.

• Local Nul on the wavy wall has higher value for / =

150�–240� compared to other angles of inclination.
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